Introduction to Continuous time to Event Data
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Using survey data from a nationally le, this article expl marriage
timing varies across major religious denominations. Survival analysis indicates that net of
statistical controls, Catholics, moderate Protestants, conservative Protestants, and Mormons
marry ifi carlier than their fili: ‘This holds true for women and
men. However, no statistical differences emerge between Jews, liberal Protestants, and the
unaffiliated. As surmised, auxiliary statistical tests reveal additional religious subcultural
variations: (a) Jews tend to marry later than Catholics, conservative Protestants, and Mor-
mons; (b) Catholics also marry later than conservative Protestants and Mormons; (c) no
statistical difference surfaces between Mormons and conservative Protestants; and (d) dif-
ferences between Catholics and liberal Protestants as well as between Jews and liberal Prot-
estants are statistically negligible. These findings ically support inati
subcultural paradigm in the case of marriage timing.
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Likelihood Based Approaches
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Modelling Censoring and Event Processes

» In order to account for censoring, we will typically jointly model (T;, ;).
> We let f(t;;0) and g(cj; ¢) be the respective densities.

» We let #; be the observed event time and §; be the event indicator.

» Take G(c;; ¢) to be the survival curve for censoring.

» Assume that censoring is independent of the event, T; L C;, then ..

Li(0,¢) = f(&:0)" x S(&;:0)' ™" x g(ti: )"~ x G(&: )"
» Assume that censoring is uninformative so that 6 N ¢ = (), then ..

L’(G)Qb) = f(Er9)6l X 5(?,'; (9)1_6"'



Re-writing based on Hazard

Since h(t) = % then
Li(0, ¢) = f(t;0)" x S(t::0)'" = h(t;: 0)"S(t:: 0).

If we specify a specific distribution this can be worked out.



Location-Scale Families



Definition

Suppose that a random variable Y can be written as
Y =a+ bX,

for X in the same family of distributions as Y.

Then the distribution of X and Y is called a location-scale family.



Example

If X ~ N(0,1) and Y ~ N(u,0?), then

Y2+ oX.

If Y ~ Exp(p) then
log(Y) = logp+ W,

where W has an extreme value distribution.



Location-Scale “Regression”
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Breakdown into Non-Normal Errors

Note that if, for some transformation, we have
Y=g(T)=pn+W,
where W is considered an error term, this looks like a regression model.

Estimation of the distribution becomes estimation of p.



Parametric Estimation

> We assume independent censoring.



Parametric Estimation

> We assume independent censoring.
» We assume non-informative censoring.



Parametric Estimation

> We assume independent censoring.

» We assume non-informative censoring.

> We specify a parametric form for the distribution, typically a location-scale
family.



Parametric Estimation

> We assume independent censoring.

» We assume non-informative censoring.

> We specify a parametric form for the distribution, typically a location-scale
family.

> We find the ML estimator.



Parametric Estimation

> We assume independent censoring.

» We assume non-informative censoring.

> We specify a parametric form for the distribution, typically a location-scale
family.

> We find the ML estimator.

» This process will be expanded to allow for covariates, later.



Truncation



Sample Bias

Truncation occurs when our sample contains only individuals with T; > u or T; < u for
some threshold u.

When we have truncation we need to run a conditional analysis. That is, we have to
condition on T; > u.

This way, we will consider
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Summary

» Continuous time survival data can be analyzed with parametric likelihood
analysis.

» Location-scale families provide a convenient, regression-type formualtion.

» Truncation is a problem which requires a conditional analysis.

» Standard likelihood techniques are used.



What is Next?
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Coming up. ..

» We will explore likelihood derivation in full.

> We will work through location-scale families and show the implied log-linear
regression models.

> We will fit parametric likelihood models in R.

» Then... two final types of models for continuous time survival analysis.



