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0
h(s)ds The Cumulative Hazard Function.



Likelihood Based Approaches



Modelling Censoring and Event Processes

I In order to account for censoring, we will typically jointly model (Ti ,Ci ).

I We let f (ti ; θ) and g(ci ;φ) be the respective densities.
I We let t̃i be the observed event time and δi be the event indicator.
I Take G(ci ;φ) to be the survival curve for censoring.
I Assume that censoring is independent of the event, Ti ⊥ Ci , then ..

Li (θ, φ) = f (t̃i ; θ)δi × S(t̃i ; θ)1−δi × g(t̃i ;φ)1−δi × G(t̃i ;φ)δi .

I Assume that censoring is uninformative so that θ ∩ φ = ∅, then ..

Li (θ, φ) = f (t̃i ; θ)δi × S(t̃i ; θ)1−δi .
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Re-writing based on Hazard

Since h(t) = f (t)
S(t) then

Li(θ, φ) = f (t̃i ; θ)δi × S(t̃i ; θ)1−δi = h(t̃i ; θ)δi S(t̃i ; θ).

If we specify a specific distribution this can be worked out.



Location-Scale Families



Definition

Suppose that a random variable Y can be written as

Y = a + bX ,

for X in the same family of distributions as Y .

Then the distribution of X and Y is called a location-scale family.



Example

If X ∼ N(0, 1) and Y ∼ N(µ, σ2), then

Y d= µ+ σX .

If Y ∼ Exp(ρ) then
log(Y ) = log ρ+ W ,

where W has an extreme value distribution.



Location-Scale “Regression”



Breakdown into Non-Normal Errors

Note that if, for some transformation, we have

Y = g(T ) = µ+ W ,

where W is considered an error term, this looks like a regression model.

Estimation of the distribution becomes estimation of µ.
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Parametric Estimation

I We assume independent censoring.

I We assume non-informative censoring.
I We specify a parametric form for the distribution, typically a location-scale

family.
I We find the ML estimator.
I This process will be expanded to allow for covariates, later.
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Truncation



Sample Bias

Truncation occurs when our sample contains only individuals with Ti > u or Ti < u for
some threshold u.

When we have truncation we need to run a conditional analysis. That is, we have to
condition on Ti > u.

This way, we will consider

Li (θ) = f (ti |T > u; θ) = f (ti ; θ)
S(u; θ) .



Summary

I Continuous time survival data can be analyzed with parametric likelihood
analysis.

I Location-scale families provide a convenient, regression-type formualtion.
I Truncation is a problem which requires a conditional analysis.
I Standard likelihood techniques are used.
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What is Next?



Coming up. . .

I We will explore likelihood derivation in full.

I We will work through location-scale families and show the implied log-linear
regression models.

I We will fit parametric likelihood models in R.
I Then. . . two final types of models for continuous time survival analysis.
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